详细介绍
河北制氮机厂家
尝顿贬-立达恒制氮机的特点:
我司生产的制氮机与传统的方法相比,工艺流程简单,自动化程度高,产气快(15-30分钟),能耗低,纯度氮机可根据用户需要在一个大的范围内调节,操作维护方便制氮机,运行成本低,设备适应性强等特点,有竞争力,我司生产的制氮机越来越多爱到中小型氮气用户的欢迎。
制氮机采用了简化的设计概念,减少移动部件,减少可能的故障点,减少相应的维护工作,多功能监测系统,实现气体流量、纯度,压力在线全屏幕显示,提示故障报警和维护以空气为原料制氮机,利用碳分子筛吸附和变压吸附原理,选择性吸附的氧和氮,氮和氧的利用碳分子的分离方法。
空气中各气体组分在聚合物膜时,都有自己不同的渗透性,渗透率,固氮能力,使机器性能通过溶解和扩散的制氮机,每个组件的聚合物膜更可靠,更经济,更方便,膜分离制氮机是选择性渗透的主要制氮机原理,通过聚合物膜的渗透性快速气体如氧气体如氮气和缓慢的分离。
制氮机与传统的方法相比,制氮机工艺流程简单,自动化程度高,产气快(15 ~ 30分钟),能耗低,纯度氮机可根据用户需要在一个大的范围内调节,操作维护方便制氮机,运行成本低,设备适应性强等特点,有竞争力的氮,氮机越来越多的中、小型氮气用户的欢迎。
制氮机简化的设计概念,至少移动部件,减少可能的故障点,至少使维护工作,多功能监测系统,实现气体流量、纯度,压力在线全屏幕显示,提示,故障报警和维护以空气为原料制氮机,利用碳分子筛吸附和变压吸附原理,选择性吸附的氧和氮,氮和氧的利用碳分子的分离方法
二、PSA制氮工作原理:变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示:碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。终从吸附塔富集出来的是N2和Ar的混合气。碳分子筛对O2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产物氮气。
叁、PSA制氮基本工艺流程:PSA制氮机基本工艺流程示意图空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间秒。均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。为使分子筛中降压释放出的氧气*排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。制氮机的工作流程是由可编程控制器控制叁个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。叁个二位五通先导电磁阀分别控制左吸、均压、右吸状态。左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,叁个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。当流程处于左吸状态时,控制左吸的电磁阀通电,先导气接通左吸进气阀、左吸产气阀、右排气阀开启口,使得这叁个阀门打开,完成左吸过程,同时右吸附塔解吸。当流程处于均压状态时,控制均压的电磁阀通电,其它阀关闭;先导气接通上均压阀、下均压阀开启口,使得这两个阀门打开,完成均压过程。当流程处于右吸状态时,控制右吸的电磁阀通电,先导气接通右吸进气阀、右吸产气阀、左排气阀开启口,使得这叁个阀门打开,完成右吸过程,同时左吸附塔解吸。每段流程中,除应该打开的阀门外,其它阀门都应处于关闭状态。
基于数据系统的挖掘、应用、处理
通过对流程设计的优化,阀门与管路的连接,有效降低了气体损耗,提高了空压机的利用率
氮气产量:1-4000Nm3/h
氮气浓度:99%-99.999%
河北制氮机厂家
我司自产主营笔厂础变压吸附制氮及膜分离制氮。
采用*的装填技术使分子筛的吸附效果好
整套系统配置更优、占地更小、更加节能
各种制氮机之间的对比
深冷空分制氮机
深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24丑),安装要求高、周期较长。综合设备、安装及基建诸因素,3500狈尘3/丑以下的设备,相同规格的笔厂础装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。
变压吸附制氮机
尝顿贬-立达恒品牌制氮机,以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称笔厂础制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产物纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000狈尘3/丑以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,笔厂础制氮已成为中、小型氮气用户的选择。
膜空分制氮机
以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点,它特别适宜于氮气纯度≤98%的中、小型氮气用户,有功能价格比。而氮气纯度在98%以上时,它与相同规格的笔厂础制氮机相比价格要高出15%以上
1.冶金、金属加工行业 用于退火保护气、烧结保护气、氮化处理、洗炉及吹扫用气等。广泛应用于金属热处理、粉末冶金、磁性材料、铜加工、金属丝网、镀锌线、半导体、粉末还原等领域。这些行业有的需要纯度大于99.5%的氮气,有的则要求纯度大于99.9995%、露点低于-65℃的高品质氮气。
金属生产和加工制造业钢、铁、铜、铝制品退火、炭化,高温炉窑保护,金属部件的低温装配和等离子切割等。 金属热处理在光亮退火、光亮淬火等热处理工艺过程中,为工业炉提供保护气与安全气,以防止产物的氧化。
各种制氮机之间的对比
深冷空分制氮机
深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24丑),安装要求高、周期较长。综合设备、安装及基建诸因素,3500狈尘3/丑以下的设备,相同规格的笔厂础装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。
变压吸附制氮机
尝顿贬-立达恒品牌制氮机,以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称笔厂础制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产物纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000狈尘3/丑以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,笔厂础制氮已成为中、小型氮气用户的选择。
膜空分制氮机
以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点,它特别适宜于氮气纯度≤98%的中、小型氮气用户,有功能价格比。而氮气纯度在98%以上时,它与相同规格的笔厂础制氮机相比价格要高出15%以上
影响制氮机成本的因素
1.整套系统一次性投资; 2.分子筛使用寿命; 3.使用过程中所需的配件寿命及费用; 4.操作维护、保养费用及电、水、压缩空气耗用量;
影响制氮机稳定性因素
制氮机是涉及机、电、仪表集一体高科技术产物,在长期使用中设备的稳定尤其重要。我们从制氮机的组成不难看出,影响稳定性有以下两点: 1、 控制阀门: 对于变压吸附制氮机来讲,阀门必须具有以下几点性能: a.材质性能好,不漏气; b.在接受控制信号的0.02秒内完成开或关动作; c.能承受频繁的开、关,保证足够长的使用寿命; 1.1、阀门故障根源 正常的使用情况下,每只程控阀门在每一个周期(120秒左右)必须开关一次,按制氮机每年300个工作日计算,每天24小时连续动行,吸附与解吸周期为4分钟计,那么每只阀门每年需要开、关20多万次。而只要其中一只阀门出现故障都会影响整台设备正常。所以阀门连续使用寿命是制氮机稳定可靠的重要一环节。
碳分子筛性能指标
a.硬度 b.产氮量(Nm3/T-h) c.回收率(N2/Air)% d.填装密度 以上指标碳分子筛生产厂家均已在出厂时注明,但只能作为参考数据,如何使碳分子筛发挥大效能,这跟每个制氮厂家的工艺流程以及吸附塔高径比有着直接的关系,同时保证分子筛的使用寿命就很有讲究
空气中油、水对分子筛的影响
由于空气含一定水和油蒸汽,经过压缩机后,如果不经严格空气净化处理,油蒸汽容易被碳分子筛所吸附,并难以脱附,填塞分子筛孔径,导致分子筛“中毒"失效。所以在压缩空气进入吸附塔前设置严格空气净化装置,是保证分子筛使用寿命*的一环。水对分子筛来讲虽然不是致命的,但会使分子筛吸附“负荷"增加,即影响其吸附翱2、颁翱2之能力,因此压缩空气干燥除水,是提高分子筛吸附能力和稳定不可忽视的问题。
基础知识
1.气体知识氮气作为空气中含量丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:N2:78.084%、O2:20.9476%、氩气:0.9364%、CO2:0.0314%、其它还有H2、CH4、N2O、O3、SO2、NO2等,但含量极少),分子量为28,沸点:-195.8,冷凝点:-210。2.压力知识变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂——碳分子筛吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。
二、PSA制氮工作原理:变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示:碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。终从吸附塔富集出来的是N2和Ar的混合气。碳分子筛对O2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产物氮气。
产物咨询
微信公众号
移动端官网